A remark on certainp-valent functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on C Infinity-harmonic Functions

In this paper, we prove that any nonconstant, C2 solution of the infinity Laplacian equation uxiuxj uxixj = 0 can not have interior critical points. This result was first proved by Aronsson [2] in two dimensions. When the solution is C4, Evans [6] established a Harnack inequality for |Du|, which implies that non-constant C4 solutions have no interior critical points for any dimension. Our metho...

متن کامل

A Remark on Computing Distance Functions

We propose a new method for the reconstruction of the signed distance function in the context of level set methods. The new method is a modification of the algorithm which makes use of the PDE equation for the distance function introduced by M. Sussman, P. Smereka, and S. Osher (1994, J. Comput. Phys. 119, 146). It is based mainly on the use of a truly upwind discretization near the interface. ...

متن کامل

On a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator

In this paper we obtain coefficient characterization‎, ‎extreme points and‎ ‎distortion bounds for the classes of harmonic $p-$valent functions‎ ‎defined by certain modified operator‎. ‎Some of our results improve‎ ‎and generalize previously known results‎.

متن کامل

A remark on algebraic immunity of Boolean functions

In this correspondence, an equivalent definition of algebraic immunity of Boolean functions is posed, which can clear up the confusion caused by the proof of optimal algebraic immunity of the Carlet-Feng function and some other functions constructed by virtue of Carlet and Feng’s idea.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 1996

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171296000555